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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain

cubic feet 0.02831685 cubic metres

degrees (angle) 0.01745329 radians

feet 0.3048 metres

g's (standard free fall) 9.80665 metres per
second squared

inches 25.4 millimetres

kilotons (nuclear equivalent 4.184 terajoules
of TNT)

megatons (nuclear equivalent 4.184 petajoules
of TNT)

pounds (force) per square inch 6.4757 kilopascals

pounds (mass) 0.4535924 kilograms

pound (mass) per cubic foot 16.01846 kilograms per
cubic metre

tons (2,000 pounds, mass) 907.1847 kilograms
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VULNERABILITY EVALUATION OF THE

KEYWORKER BLAST SHELTER

CHAPTER I

INTRODUCTION

1.1 BACKGROUND

At the time this study was initiated, several civil defense policy op-

tions were being analyzed for protection of industrial capability and key

workers. One option under consideration called for a program of construction

of blast shelters to protect key workers remaining in high-risk areas during a

national security crisis. In support of this option, the Federal Emergency

Management Agency (FEMA) tasked the US Army Engineer Division, Huntsville

(HND), to design the 100-man Keyworker blast shelter. The design required an

earth-covered shelter to resist the radiation and blast effects of a 1-MT

nuclear detonation at the 50-psi peak overpressure level. The first design

was based on conventional blast shelter design procedures that neglect soil-
4suu

structure interaction.

The design of the 100-man Keyworker blast shelter has evolved from the

original overly conservative design to its present form based on experimental

,' ' and analytical investigations performed'by the US Army Engineer Waterways Ex-

periment Station (WES) and the HND. Reductions in nonstruction costs as the

result of labor and material savings and less stringent backfill specifica-

tions were made without adversely affecting the structural performance. The

design modifications were validated using small-scale static and dynamic tests

during the design process. A prototype demonstration, test of the shilter was

conducted in MINOR SCALE, a high explosive (HE) 8-KT nuclear simulation. The

"shelter survived at the predicted 75-psi* pe~k overpressure level (measured

pressures were approximately 60 psi) with minor damage (1/8-inch permanenit

midspan roof deformation).

This report describes the retest of the prototype shelter using the High-

"Explosive Simulation Technique (HFST) to simulate the airblast component of a

large-yield nuclear detonation.

A A table of factors' for converting non-SI units of measurement to SI
'-. , (rmetric) units is presented on page v.
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1.2 OBJECTIVES

The objectives of this test were to study the large deformation behavior

of the Keyworker blast shelter and to study the in-structure shock environment

during an overload condition.

1.3 SCOPE

The prototype shelter that sutvived the MINOR SCALE HE event with negli-

gible damage was retested in a HEST environment. The predicted simulation for

the test was a I-MT yield at 160-psi peak overpressure. The shelter was

tested in fully functional form as In MINOR SCALE. Also, instrumented anthro-

pomorphic mannequins were used to study occupant survivability. They were

placed in sitting and standing positions, and the motions were recorded using

hlp,'-speed photography and acceleration data. The diesel generator and a'ir

moving equipment were tested pretest and posttest to investigate equipment

survivability.

I
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CHAPTER 2

TEST PROCEDURES

2.1 (;ENERAL

The prototype Keyworker blast shelter used in this study was constructed

dUring FY 85on WhLte Sands Missile Range (WSMR) in New'Mexico for the Defense

Nuclear Ane, (DNA) sponsored-HE event, MINOR SCALE. The structurc incurred
negligible dnmaga during the MINOR SCALE test in June 1985. A retest of the

structure was performed on 12 August 1986 using the HEST to simulate the nu-

clear airblast envt inment. The development of the HEST procedure is de-

scribed by WiTpler and others (1978), and its use in similar tests is de-

Pq ~scrib.!d by Kiger (1981).

0% A HFST test InvQlves the detonation of high explosives distributed in a

charge cavity on the ground surface above the structure. The charge cavity'is

covered vith soil overburden to momentarily confine the blast pressure to sim-

'. ulate the peak overpressure and overpressure decay of a nuclear detonation.

This chapter describes the structural model, the test procedure, and the

instrumentation.

2.2 STRUCTURAL DETAILS
".4

"Construction and structural details for the shelter are given by Woodson

and Slawson (1986). Construction drawings for the shelter were provided by

HND. Floor plan and elevation views of the shelter are shown in Figure-2.1.

A pretest view of the shelter before backfilling is shown in Figure 2.2. The

three-bay shelter design had the following nominal details:

1. Clear span of 10 feet, 11-1/2 inches.,

* ..> 2. Clear height of 8 feet, 6 inches.

3. Wall and floor thickness of 9 inches.

* 4. Average roof thickness of 10-1/4 inches.

* 5. Average span-to-thickness (L/t) ratio of 12.8.

6'. Average effective depth (d) to tension steel of 7-3/8 inches at the

slab midspan (measured from the compression face, top, of the slab to the cen-

"troil of the tension steel), which yields an average tensile steel ratio of

0.010 at midspan.

3



7. Average depth (d') to the compression steel of 3-3/8 inches at the

slab midspan (measured from the compression face, top, of the slab to the cen-

troid of the compression steel), which yields an average compression steel

ratio of 0.0033 at midspan.

8. Average tension (top) and compression (bottom) steel ratios at the

roof support of 0.011 and 0.0036, respectively.

9. Average roof span-to-effective depth (L/d) ratio of 17.8.

10. Transverse steel ratios of approximately 0.002 in the roof, walls,

and floor.

11. Americ; rt Society for Testing and Materials (ASTM) Grade 60 reinforc-

ing steel.

12. Concrete design strength of 3,000 psi.

13. Depth-of-burial (DOB) of 4 feet.

Roof reinforcement consisted of No. 6 truss and straight bars spaced at

6 inches on center. A truss bar was formed by bending a straight bar so that

it would provide tension reinforcement at all locations along the roof span

(i.e., located near the bottom face of the slab at middpan and near the top

face of, the slab at the supports). Two truss bars, a top straight bar, and a

bottom straight bar provided the reinforcement in a typical 18-inch section of

the roof slab. Exterior wall principal reinforcement consisted of No. 5 ver-

tical bars spaced at 6 inches on center in each face of the wall. No. 3

single-leg stirrups were spaced at 12 inches on center with alternate rows

staggered 6 inches in the exterior walls. Interior wall principal reinforce-

ment :onsisted of No. 3 vertical bars spaced at 12 inches on center with no

stirrups.

The shelter for Minor Scale contained the mechanical equipment required

to circulate air to sustain up to 100 occupants. This equipment included a

Deutz Model F1/2L511 6-KW diesel generator for ilectrical power, two fans with

a capacity of 5,000 cfm each for air intake and exhaust, a chain-operated

butterfly valve rated at 150 psi to seal the air exhaust stack during the

button-up mode, and duct work to carry intak4 Pir to each bay. Also included

were fluorescent and incandescent lighting.

4



2.3 INSTRUMENTATION

Recorded electronic data include: (1) airblast pressure; (2) roof and

wall interface pressure; (3) soil stress; (4) free-field, structure, and man-

nequin accelerations; (5) and structure deflections.

Instrumentation locations are shown in Figures 2.3 and 2.4. Test data

were recorded on 32-channel Sangamo Sabre III and V FM magnetic tape recorders

located in an instrumentation trailer approximately 1,000 feet from the shel-

ter. A zero-time channel was recorded on each data tape to establish a common

time reference for the data. The data were recorded at 120 in/s, digitized at

200 kHz, and plotted. The data plots are presented in Appendix A. Recovered

data was very good. The only nonusable data record was from gage Dl.

In addition to the recorded electronic data, the responses of the manne-

quins were monitored by high-speed photography. A pretest view of the manne-

quins is shown in Figure 2.5.

2.3.1 Airblast Pressure Gages

Ten Kulite Model HKS-11-375 airblast pressure (AB) gages with ranges of

5,000 psi were used to measure blast pressure at eight locations on the ground

surface around and above the shelter.

2.3.2 Interface Pressure Gages

Twenty Kulite Model VM-750-5 interface pressure (IF) gages with ranges of

200 and 500 psi were used at locations on the shelter roof and on one wall to

measure soil-roof/wall interface stresses.

2.3.3 Soil Stress Gages

Eleven Kulite Model LQV-080-LR soil stress (SE) gages were used to mea-

sure the vertical free-field stress at locations ranging from near the ground

surface to near the base of the shelter. These gages hal ranges of 200 psi.

2.3.4 Accelerometers

Sixteen Fndevco accelerometers were used to measure free-field, struc-

ture, and mannequin accelerations. Two Model 2262C accelerometers (AFF- 1,-2)

were used to measure vertical accelerations at the roof and floor levels of

the shelter in the free-field. These gages had ranges of 1,000 g's. Four

Model 2262CA gages (AF-1 to AF-4) with ranges of 200 g's were used to mensure

vertical floor accelerations. Four Model 2262C gages (AR-I to AR-4) with

ranges of 1,000 g's were used to meagure vertical roof accelerations.

5



Triaxial acceleration measurements were de on the mannequins using

Model 2262C accelerometers with ranges o 25 g's. Mannequin I was standing

with the accelerometers (AMI-X, -Y, -Z) ounted on the outside of its left

ankle. Mannequin 2 was sitting on a bot om bunk with the accelerometers

(AM2-X, -Y, -Z) mounted in its chest cay ty. The X and Z measurements

were mutually perpendicular horizontal c)mponents of acceleration, while the

Y measurement was the vertical component of acceleration (see Figure 2.4).

2.3.5 Deflection Gages

Roof (D-I to D-4) and wall (DW-1) d flectlon measurements were made using

Celesco Model PT-1O1-IOA-7559 high-frequincy position/displacement transducers

with ranges of 10 inches.. Gages were lo.ated at roof and floor midspans in

all three bays of the structure for relative roof-floor deflection measure-

mants And at midheight, midlength of one bay for wall displacement

measurement.

2.3.6 High-Speed Photography

High-speed photography was used ins de the shelter to monitor the re-

sponse of the mannequins. The two camer a used were Locams (manufactured by

Redlake Co., Cambel, Calif.), running at approximately 400 frames per second.

2.4 TEST CONFIGURATION

The test configuration is shown in igure 2.6. The test procedure in-

cluded instrumentation of the structure nd free-field, backfilling to a depth

of 4 feet above the shelter roof, constr cting the charge cavity, covering the

charge cavity with sand overburden, and etonation of the charge. Figures 2.7

through 2.9 document test preparation.

The HEST procedure consists of the detonation of high explosive primacord

(pentaerythritol tetranitrate, or PETN) in a charge cavity constructed on the

ground surface above the structure. The 60-foot-square by 4-foot-thick charge

cavity consisted of a wooden framing system covered with plywood. The

195 strands of 400-gr/ft primacord were uniformly distributed at nidheight of

the charge cavity. Each strand of primacord was detonated simultai.eously at

one end by strands of 100-gr/ft primacord that were wrapped around a blasting

cap. The pressure generated by the detonation was mcmentarily confined by

4 feet of sand overburden that covered •he charge cavity. The depth of the

charge cavity, the height of the overbu den, and the charge density6



(0.0464 pounds of explosive per cubic foot of charge cavity volume) were

designed to simulate the peak overpressure and pressure decay of a I-MT nu-

clear detonation at 160-psi peak overpressure.

The procedure for testing the structure called for the air intake and ex-

haust to be closed (button-up mode) during the test since blast valves were

not included for this structure.

2.5 STRUCTURAL MATERIAL PROPERTIES

Steel reinforcement and concrete strengths for the shelter were reported
by Woodson and Slawson (1986) for the shelter as tested In MINOR SCALE. Spec-
ifications for the shelter called for ASTM Grade 60 reinforcing steel and

3,000-psi concrete (combressive atrength at 28 days). Based on tensile tests

on seven random samples, the roof steel (No. 6 bars) had mean yield, ultimate,

and rupture strengths of 61.6, 95.5, and 80.4 ksi, respectively. The corre-

sponding standard deviations for these values were 1.27, 0.53, and 1.34 ksi.

Five random samples of the wall principal steel (No. 5 bars) were tested

1rin tension until rupture. The mean y~eld, ultimate, and rupture strengths

iwere 75.2, 115.4, and 98.1 kni, respectively.' The corresponding standard de-

viations were 0.88, 1.09, and 2.44 kal.
The roof and walls were cast from 10 batches of concrete. The mean 28-

day concrete compressive strength for the roof and w lls was 2,260 psi with a

standard deviation of 280 psi. Concrete 3ges ranged from approximately 2 to

4 months by the time the shelter was tested during MINOR SCALE (27 June 1985).

At that time, the mean concrete compressive strength was 3,240 psi with a

standard deviation of 4R0 psi. This increase in strength was greater than

Sexpected. An additional 14 months elapsed before the HEST test was performed

(concrete ages of 16 to 18 months). A conservative estimate (from a design

perspective) of the concrete compressive strength on test day was taken as

* 3,3G0 p since.to concrete testing was performed at that time.

2.6 BACKFILL MATERIAL PROPERTIES
AND rEST BED PPEPARATION

The backfill consisted of a 2-foot-thick concrete sand blanket around the

structurd with blow sand filling the remainder of the excavation to a level

4 feet above the shelter roof. The backfill was placed in 8-inch layers and

comnpacted to at least 95 percent of the soil's maximum Proctor density.

7



Compaction was provided by a Bomrg BW160RDI roller/compactor and a Dynapac

Model CM-10 gasoline-powered vibrator. Density and molwsure -content were con-

trolled during backfill placement using a Troxler nuclear density gage,

The concrete sand was a localy obtained sand made from crushed rock ma-

terial that clascified as a brown sand (SP) by the Unified Soil Classification

System (USCS) (US Army Corps of Engineers 1960) with a maximum Proctor dry

dansity of 110.9 lb/ft3 and an optimum moisture content of 8.5 percent. Based

on the results of six samples during backfill placement, the mean wet density,
3dry density, and moisture content of the concrete sand wore 118.1 lb/ft

109.6 lb/ft3, and 7.8 percent, respectively. The corresponding standard devi-
3 3ations were 2.0 lb/ft , 1.7 lb/ft , and 0.7 percent. The concrete sand was

compacted to 99 percent of its maximum Proctor density. The results of direct

shear tests indicated that the sand had an angle of internal friction of

36 degrees.

The blow sand was processed from on-site material. It classified as a

brown silty sand (SF-SM) by the. USCS and had an angle of internal friction of

32 degrees (based on direct shear tests). The maximum Proctor dry density was
3* 106.2 lb/ft , and the optimum moisture content was 8.8 percent. Based on the

results of 36 samples during backfill placement, the mean wet density, dry

density, and moisture content of the blow sand were 112.1 lb/ft3,

-~ 3101.7 lb/ft , and 10.2 percent, respectively. The corresponding standard .de-
3' 3" viations were 4.3 lb/ft , 3.1 lb/ft 3 , and 2.9 percept. The blow sand was com-

pacted to 95 percent of its maximum Proctor density.

8
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- (See Figure 2.1 for bunk location in shelter).
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CHAPTER 3

TEST RESULTS

"3.1 STRUCTURAL DAMAGE

The HEST test of the prototype shelter was performed on the structure

that survived the MINOR SCALE HE event. The condition of the shelter prior to

the HEST test was essentially undamaged.

Structural damage during the HEST retest of the shelter was significant.

Roof deflection profiles for each bay of the shelter are shown in'Figure 3.1

(bay 3 is closest to the entryway). The maximum permanent roof deflection was

approximately 17 inches for bay 1, 8 inches for bay. 2, and 13 inches for

bay 3. The exterior bays (0 and 3) received more damage than the interior

bay (2) as expected. The roof response mode is described as a combination of

shear and flexure. Overall views of the damaged roof are shown in Figures 3.2

" and 3.3. No roof steel appeared to be broken in the exposed areas.

For bay 1, the embedded angle to wall connection failed as the result of

"large shear deformations of the roof slab at the exterior wall. The angle

(shown in Figure 3.4) supports the metal roof decking. The maximum shear de-

formation of the roof slab at the face of the exterior wall was approximately

"10-1/2 inches. At the interior support, approximately 7-3/4 inches of shear

deformation occurred in the first 15 inches of the clear span. Shear deforma-

tion accounted for approximately 54 percent of the total permanent deflection

(17 inches). An interior view of the roof slab for bay I is shown in

Figure 3.5.

Shear response accounted for approximately 44 percent of the total per-

nmanent deformation (8 inches) of bay 2. Measured shear deformations of

I 3-1/2 inches were noted at each wall for the interior bay. The shear defor-

mation occurred over an area that extended 15 to 16 inches from the face of

the walls. Figure 3.6 shows a posttest interior view of bay 2.

w Bay 3 behaved almost identically to bay 1. The embedded angle connection

failed over nearly the entire length of the exterior wall. Approximately

9-t/2 inches of shear response occurred in the roof slab at the face of *the

exterior wall, and approximately 6-1/2 inches of shear deformation occurrt

4 over the first 16 inches of the span from the face of the interior wall.

Shear deformation accounted for approximately 62 percent of the total
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permanent midspan deflection. An interior view of bay 3 is shown in Fig-

ure 3.7, and a view of the exposed top roof reinforcement at the exterior wall
of bay 3 is shown in Figure 3.8.

The walls and floor slabs survived with only minor cracking. The entry-

way was severely damaged during this test, as shown in Figures 3.2 and 3.9.

However, the test configuration did not load the entryway in the same manner

as a nuclear detonation. The tops of the entryway shafts were covered with

"steel plates to support the soil overburden covering the HEST cavity. The
HEST cavity did not cover the entryway openings but did extend to the edge of

the entryway. Therefore, only the sides of the entryway closest to the shel-

ter were loaded. In a nuclear event, all sides and the interioz of the entry-

way would be loaded. The entryvay was still usable after the test except that

it was filled with debris from the HEST cavity (mostly overburden soil). The

HEST test did not retest the blast door.

The metal decking on the underside of the roof separated from the wall

above the blast door, as shown in Figure 3.10. The connection of the embedded

angle to the wall failed. This allowed crushed concrete to fall inside the

shelter.

In general, the metal decking was very successful in its dual role of

providing roof construction formwork and preventing concrete rubble from fall-

ing from the damaged roof slab.

3.2 DAMAGE TO NONSTRUCTURAL
AND SUPPORT SYSTEMS

The stud wall that isolated the generator failed as a result of excessive

. roof deflection (see Figure 3.7). Although this failure was not important

structurally, it would lead to excessive noise levels inside the shelter bays

for occupants as described by Woodson and Slawson (1986).

"The exhaust stack/roof slab connection was distressed, as shown in Fig-

ure 3.11. The exhaust penetration detail was critical because of the large

U masses suspended there. The combined weight of the exhaust fan, butterfly
I-

"valve, and connector was approximately 1,100 pounds. Although damage did

occur at the exhaust penetration, the exhaust system was functional after the

test. The generator and fuel tank were undamaged during the test.

Another area of concern was the intake fan support, which attached the

260-pound intake fan to the shelter. This detail survived with only minor

"19
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concrete cracking. Roof-mounted electrical conduits and fluorescent light

fixtures failed during the test as the result of excessive roof deflection.

3.3 RIGID-BODY MOTION

WSMR performed pretest and posttest surveys on the four corners of the

roof of the shelter. The survey indicated that the structure moved

1-1/2 inches downward during the test. Damage to the floor slab (minor crack-

ing) did not indicate that this much rigid-body motion occurred.

3.4 MANNEQUIN MOVEMENT

The final positions of the mannequins were unchanged from pretest loca-

tions. High-speed photography was used to monitor mannequin motion during the

test. The camera setup and mannequin locations are shown in Figure 2.5. The

two cameras viewing the mannequin motion operated at approximately 400 frames

per second. Analysis of the high-speed film is included in Chapter 4.

3.5 RECOVEREr DATA

Data for this test included electronic instrumentation and high-sued

photography. Data recovery was very good for the airblast pressure gages,

soil stress gages, accelerometers, interface pressure gages, and deflection

gages. All recovered data are presented in Appendix A. The data are refer-

enced to a common zero time and are displayed with time in millisecords as the

abscissa.
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Figure 3.2. Posttest view of the shelter showing
entryway damage.

-~ . .m .*.

Fiur 3.3 Potet iwo tesete of

22; b



Figre3.4 Iterorviev of bay I shoving the failure of
the mbededangle 'to vail connection.

Figure 3.5. Interior view of bay 1I.



Figure 3.6. Interior view of bay 2.

Figure 3. 7. Intcerior view of bay 3.
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Figure 3.8. Expcsed top of roof reinforcement, bay 3.

Figure 3.9. Interior view of entryway damage.
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ABOVE OOORWAY

Figure 3.10. Damage above the blast door.

Figure 3.11. Post~test view of the exhaust stack.
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CHAPTER 4

ANALYSIS

4.1. ANALYSIS OF FREE-FIELD AND

STRUCTURE LOADING DATA

The VSBS computer program (Kiger, Slawson, and Hyde 1984) used to predict

roof response requires the Input of structure, backfill, and loading parame-

"ters. From this data, the single-degree-of-freedom (SDOF).model of the shel-

"ter roof is formulated. Calculations of the resistance function and the

j effective roof loading require additional calculated or input variables. This

chapter analyzes the recovered data to determine the experimental values of

nitclear weapon simulation, loading wave velocity, lateral soil pressure co-

efficient, roof reflection factor, attenuation factor, arching factor, and

load factor. The experimentally observed variables are compared with calcu-

lated or assumed values used in the VSBS program, and response calculations

are presented. In addition, in-structure shock and survivability are

investigated.

4.1.1 Nuclear Weapon Simulation

Estimates of the nuclear weapon yield and peak pressure that best fit the

recovered airblast pressure rocords are required to define the ground surface

loading function. The weapon simulations were determined by comparing the

data records with tho Speicher and Brode (1981) definitions of the pressure-

time histories of various yield surface bursts. Best fits of yield and peak

Soverpressure were determined for each pressure record, and a collective fit of

all the records was performed to determine the average simulation. In addi-

tion, the best fit peak overpressure for a i-MT surface burst was determined

since the desired simulation was 1-MT at 160 psi. The fits were made using

* the principle of least squares on the impulse-time record of the airblast data

* and the Speicher-Brode function. The procedure used is presented in more de-

tail by Mlakar and Walker (1980) and was modified for impulse comparison by

Mr. James Baylot of WES. Fits were made using 50 and 100 ms of data.

The best 50-ms fit to all the data records was 58 KT at 22 6 -psi peak

overpressure. The best I-MT fit for 50 nis was 159-psi peak overpressure.

These two fits are presented in Figure 4.1. A comparison of the pressure-time

histories of the best fit and best 1-MT fit is shown in Figure 4.2. Table 4.1
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summarizes the results of all the weapon fits.

4.1.2 Loading Wave Velocity

Loading wave velocities were calculated based on the arrival time of the

vertical stress wave at the soil stress gages located at various depths in the

free field. The gages were placed in groups for comparison. The gages in

each group were located at different depths in a plane perpendicular to the

direction of detonation so that the ground surface above each gage was loaded

by the blast wave at the same time. The mean loading wave velocities deter-

mined from group I (SE-1, -2, -3, -4, -5, -6, and -7) and group 2 (SE-8, -9,

and -10) were 1,150 and 1,170 ft/s, respectively. It is recommended that a

loading wave velocity of 1,160 ft/s be used for structural reaponse

calculations.

4.1.3 Lateral Soil Pressure Coefficient

The lateral soil pressure coefficient (ratio of horizontal to vertical

soil pressures) was determined by comparing the peak vertical free-field

stresses with peak horizontal wall interface stresses at the same depth of

burial. Based on a comparison of the data from gages IF-18 with SE-9 and IF-

19 with SE-lO, the experimental lateral soil pressure coefficient was 0.6.

Stress amplification resulting from reflection at the wall-soil interface may

have increased the experimental coefficient slightly. However, 0.6 is a rea-

sonable value for the backfill used in this test.

4.1.4 Roof Reflection Factor

The loads on the roof 'of a buried structure are increased initially be-

cause of reflection of the loading wave. This increase in peak stress de-

creases rapidly as the result of tensile wave reflectiona from the concrete-

air interface at the bottom ef the roof slab and from ;wae interactions with

the free soil surface. Therefore, the duration of the amplified stress spike

is a function of the rooi thickness, the loading wave velocity in the backfill

and in the roof slab, the backfill material properties, and the depth of

burial. The duration of the reflected spike was determined from the roof

interface pressure data and was found to be approximately 4.7 ms.

The roof reflection factor was determined by comparing the peak roof

interface stresses with the peak soil stress at the roof level. The mean ex-

perimental value of the roof reflection factor is 1.99. If the interface pres-

sure gages near the supports are excluded, the mean reflecticn factor is 1.6.
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4.1.5 Attenuation Factor

The attenuation of peak stress with increasing depth is due to both the

spatial decay of the shock front and hysteretic losses in the soil. The VSBS

program modifies the soil surface loading by an attenuation factor to calcu-

late the roof loading and the thrust in the roof caused by the horizontal wall

loading. For this reason, the attenuation factors at the roof level and at

the midheight of the structure are required. Based on a comparison of peak

soil stresses at these locations with the best fit nuclear weapon simulation

at the ground surface (58 KT, 226 psi for 50 ms), experimental attenuation

faczors of 0.78 and 0.62 were determined at the roof level and structure mid-

height,' respectively. The weapon simulation was used rather than actual sur-

face pressure data since the large high-frequency spikes in the HEST loading

,are filtered out before the loading wave reaches the roof level.

'4.1.6 Soil Archirg Ratio and Load Factor

The roof loading distribution for shallow-buried structures is nonuniform

el in nature after the duration of the reflected spike as a result of soil struc-

A! ture interaction (soil arching). Soil arching is caused by shear stresses

within the soil mass when relative deformations occur and is defined as the

ability of a soil to transfer 'loads from one location to another in response

to a relative displacement between the locations. This phenomenon results in

lower roof interface F *esses over the flexible clear span of the roof and
highar stresses near the support. Soil arching and its effects upon buried

structure response are discussed by Kiger, Slawson, and Hyde (1984).

The soil arching ratio is defined as the ratio of the average roof stress

to the free-field stress at the roof level. Soil arching ratios for bay 1

(away from entryway) and bay 2 (interior bay) were determined from the recov-

ered roof interface atress and free-field stress data. Soil arching ratios

were calculated after the decay of the reflected spike (4.7 ms) up to the time

of maximum response. The average arching ratios for this time span are 0.71

for bay 1 and 0.77 for bay 2. The results of the analyses are presented in

Table 4.2, and a typical plot of soil arching ratio versus time is shown in

Figure 4.3.

7 In a simple SDOF model, the total roof load is modified by a 'load factor

to determine the effective roof loading. This factor depends upon the roof

loading distribution and the deflected shape of the roof. Using a fully
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plastic response mode and the measured roof load distribution, the load fac-

tors for bay I and bay 2 were calculated. The results are presented in

Table 4.2, and a typical plot of load factor versus time is shown in Fig-

ure 4.4. The average load factor for bays 1 and 2 after the decay of the

reflected spike and before the time of maximum response is 0.26. The load

factor is also a measure of the uniformity of the load. The load factor is

0.5 for a uniform load and 0.25 for a parabolic load with zero load at

midspan.

4.2 COMPARISON OF EXPERIMENTAL AND
THEORETICAL PARAMETERS

Table 4.3 compares the experimentally determined loading parameters with

calculated values from the VSBS (Kiger, Slawson, and Hyde 1984) computer pro-

gram. Some values used by the program are required input, and suggested nor-

mal ranges are presented. The theoretical parameters agree with the experi-

mentally determined values except for the duration of the reflected spike.

The observed duration of 4.7 ms is considerably larger than the calculated

value of I ma. The duration calculated by VSBS is governed (in this case) by

tensile reflections from the concrete-air interface on the bottom of the roof

slab and is empirically limited to 12 transient times (transient time equals

the roof thickness divided by the wave velocity in concrete).

4.3 ROOF RESPONSE CALCULATIONS

The VSBS computer code was used to calculate maximum roof response using

the weaponsimulations as the input loading. The results are presented in

Table 4.4. The maximum predicted roof response ranged from 6.1 to 16.3 inches

for the input weapons and compares well with the observed permanent responses

of 8, 13, and 17 inches for the three bays of the shelter.

4.4 IN-STRUCTURE SHOCK AND SURVIVABILITY

In-structure shock is typically represented in terms of shock spectra.

Shock spectra are plots of the maximum responses, usually of relative dis-

placement, pseudovelocity, and/or acceleration of all possible linear oscilla-

tors with a specified amount of damping to a given input base acceleration-

timz history. Vertical shock spectra were calculated using the recovered

floor acceleration data as input to a computer program developed at WES. The
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shock spectra were generated for damping ratios of 0, 5, and 10 percent of

critical damping. The shock spectra are presented in Figures 4.5 through 4.8

for accelerometers AF-1 through AF-4, respectively.

Figure 4.9 compares the experimentally determined vertical shock spectra

(smoothed by hand with damping of 10 percent) for the shelter floor with fra-

gility curves for typical floor-mounted equipment (Headquarters, Department of

the Army 1987). Based on the comparison of the shock spectra and fragility

curves, generators and communication equipment should be shock isolated to

ensure their survivability. However, the diesel generator (mounted on top of

its fuel tank) in the shelter was undamaged during the test. The test results

indicate that the generator will survive the design overpressure of 50 psi and

has survived one overload test of 159 psi.

Crawford and others (1974) present a summary of human shock tolerance and

. recommend design maximum accelerations of 10 g's for a standing man at or

below the frequency of 10 Hz (resonant frequency). The experimental shock

// spectra show that a man in the standing position (most vulnerable) would not

suffer compressive fractures; however, impact injuries can occur at much lower
shock levels as a result of loss of balance and falling. The high-speed

movies of the mannequin motion showed that impact injury was not probable.

Plots of relative mannequin movement are presented in Figure 4.10.

i
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Table 4.1. Weapon simulation summary.

100-ms Simulat ons 50-ms Simulations
Pso for Pso for

W* Psot Best I-MT W Pao Best 1-MT
Gage KT psi Fit, psi K? psi Fit, psi

AB-1 21.4 270 124 52.9 222 155

AB-2 38.8 255 137 77.8 223 164

AB-3 26.5 280 134 56.5 237 165

AB-4 27.7 256 127 57.1 221 156

AB-5 26.5 264 129 52.7 229 158

AB-6 32.7 248 129 57.7 221 156

AB-7 29.4 244 124 70.3 208 152

AB-8 22.0 293 133 46.1 246 164

Avg 28.0 262 130 58.0 226 159

• W is the simulated nuclear weapon yield in kilotons TNT equivalent.
t Pso is the simulated peak overpressure in psi.

Table 4.2. Archi g ratio and load factor summary.

Average
Aver Re Arching Ratio Load

Bay* Using SE-3 Using ISE-9 Using SE-Il Averaget Factor

I 0.98 0. 5 0.51 0.71 0.26

2 1.06 0. 0 0.55 0.77 0.26

* Bay I was located on the opposite side of the shelter from the entryway.

Bay 2 was the interior bay.
t Average valtues ara presented for the time interval after the duration of

the reflected spike to the ti of maximum roof response.
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Table 4.3. Comparison of experimental and
theoretical loading parameters.

Experimental Theoretical
Parameter Value Value* Comments

Loading wave velocity 1,160.0 (1,200-1,500) Input
ft/s

Lateral soil pressure 0.6 (0,5-0,6) Input

coefficient

Roof reflection factor 1.6 1.6

Duration of reflected 4.7 1.0
spike, ms

Attenuation factor 0.78 0.87-0.98

at roof level

Attenuation factor 0.62 0.77-0.96 t
at wall midheight

* Soil arching ratio 0.73 0.60

Load factor 0.26 0.31

* Tabular values in parentheses are normal ranges of input for the soil used
in this test.

t The theoretical values of attenuation factors were based on the four mean
best fit weapon simulations presented in Chapter 4.
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Table 4.4. VSBS response calculations.

Peak Maximum Time of
Weapon Yield Overpressure Response Maximum

KT psi .... in.* Response, msat Notest

58 226 12.0 64 a

1,000 159 16.3 75 a

28 262 11.0 61 b

1,000 130 6.1 71 b

* Maximum permanent roof deflections ranged from 8 to 17 inches.

t Maximum response occurred at 80 ms for bay I and at 75 ms for bay 2.
Sa - The input weapon yield and peak overpressure were determined from 50-ms

fits of the recovered data.
b - The input weapon yield and peak overpressure were determined from

100-ms fits of the recovered data.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The Minor Scale and HEST tests of the prototype Keyworker blast shelter

validated the structural design for the 1-MT at 50-psi nuclear threat and

demonstrated that the shelter has reserve capacity to resist significant over-

loads (on the order of 130 to 160 psi) without catastrophic failure. The HEST

test (along with the 1/4-scale tests) proves that the shelter design has ade-

quate reserve capacity to resist the design load (I-MT, 50 psi) at sites

throughout the country where site conditions may not be as good as WSMR.

Even though the shear response of the roof slab was significant, the

failure mode was very ductile. The connection of the roof decking and em-

bedded angle to the exterior shelter walls (near the doorway in particular)

needs revision to prevent the embedded angle from pulling out at large roof

deformations. however, this detail is adequate for the minor damage incurred

at the design overpressure levels. The roof decking prevented most of the

crushed concrete from falling to the floor except near the walls and doorway,

as noted. Use of the roof decking protects the shelter occupants from projec-

tile injuries caused by broken concrete when the roof is significantly

damaged.

The mechanical equipment and their mounting details were adequate for the

design loading and for the overload environment. During the HEST test, the

lighting fixtures were detached from the roof slab, and the exhaust stack con-

nection to the roof slab was damaged (but not to failure). These details were

adequate at small ro,,f deformations.

The entryway design proved adequate at the design overpressure but was

severelydamaged during the HEST test. The blast door was not retested at the

higher oveipressure because the HEST does not provide the dynamic overpressure

phase required to test a blast door.

Occupant survivability is probable even at the 150-psi level. The gener-

Sator also survived at this overpressure level. Some shock isolation may be

required for communication equipment, but this was not investigated by the

test.
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5.2 RECOM14ENDATIONS

Based on the results of this test and the scale model testing programs

conducted by WES, the design of the 100-man Keyworker blast shelter should be

accepted. The minor revisions suggested in this chapter make the shelter per-

form better at large deformations resulting from overload conditions.

The shelter has adequate structural capacity to be used at the ,esign

overpressure level for the many atte conditions found throughout the country.

To limit backfill conditions to those in the current data base, the backfill

material should have an angle of internal friction greater than approximately

25 degrees, and compaction to 90 percent of the maximum Proctor density is

recommended. For special site conditions, such as high water tables, the

bermed configuration should be used. The experimental and analytical programs

conducted by WES have resulted in a sheiter design that can be u44d without a

redesign for site-specific conditioas in most cases. The shelter design has'

been experimentally validated in the buried and bermed configurations.
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